Data Science

Data Science course descriptions

Faculty

Wendy Weber (chair), Erik Insko, Stephen Fyfe, Russ Goodman, Mark Mills, Alexey Pronin, Michael Thompson.

Statement of Philosophy

Data is everywhere in today’s society. A minor in data science is a valuable way for students to learn a variety of concepts, tools, and modern technologies connected to data analysis. Further, students minoring in data science will have enhanced abilities to visualize, interpret, and communicate the results of analyses involving data. These are all essential skills for students to apply in the context of a variety of disciples, including their chosen field of study.

 

Minor Restriction

Students declaring a computer science major or mathematics major may not also declare a data science minor. Students declaring an economics major or an actuarial science major must take an elective outside of their major.

 

Data Science Minor Requirements (23-24 credits)

  1. Complete all of the following:
    COSC   110     Introduction to Computer Science (3)

    MATH   131     Calculus I (4)
    MATH   215     Applied Statistics (4) or approved disciplinary statistics course
    DATA    210     Introduction to Data Science (3)
    DATA    310     Data Visualization (3)
    DATA    440     Applied Machine Learning (3)

 

  1. Complete one of the following:
    COSC     130       Data Structures (3)

    COSC     210       Database and the Web (4)
    ECON     381       Research Methods in Economics (4)
    ECON     382       Economic Forecasting (3)
    ECON     485       Economics Research Seminar (3)
    GEOG    320       Principles of GIS with Lab (3)
    MATH     132       Calculus II (4)
    MATH     240      Linear Algebra (4)
    POLS     489      Capstone Seminar (4)
    SOC       350       Methods of Social Research (4)

Notes regarding prerequisites:
COSC 110 is a prerequisite for DATA 210
DATA 310 requires second-year standing
COSC 110 and MATH 131 are prerequisites for DATA 440